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Abstract. Cluster structures of nuclei are discussed, with emphasis on nuclear clustering in unstable nuclei.
The subjects we discuss are alpha condensed states, clustering in Be and B isotopes, and clustering in 32Mg
and 30Ne. The subject of alpha cluster condensation comes from the clustering nature of dilute nuclear
matter. We discuss that recent heavy-ion central collision experiments give us nice evidence of the clustering
in dilute nuclear matter. We then present a new prediction of the existence of the “alpha cluster condensed
states” in the self-conjugate 4n nuclei around the breakup threshold energy into n alpha-particles. As
for the clustering in neutron-rich Be, we discuss the comparison between the antisymmetrized molecular-
dynamics results and the recent experimental data, which shows that the clustering feature manifests itself
very clearly in neutron-rich Be isotopes both in the ground and excited states. Clustering in Be isotopes
near neutron dripline is intimately related to the breaking of the neutron magic number N = 8. We report
our recent study about the possible relationship between the clustering and the breaking of the neutron
magic number N = 20 in 32Mg and 30Ne.

PACS. 21.60.-n Nuclear-structure models and methods

1 Alpha “condensed states”

In central Au + Au collisions above about 100
MeV/nucleon on the basis of the results of FOPI
Collaboration, it is reported that, even at 1 GeV/nucleon,
about 50% of protons are contained in clusters. It is
considered that clusters are formed in radially expanding
dilute nuclear matter [1]. These experiments can be said
to present us with the first observation of clustering
in dilute nuclear matter. Antisymmetrized molecular
dynamics (AMD) was applied to the study of fragmen-
tation in radial expansion in the 197Au + 197Au system
at incident energies of 150 and 250 MeV/nucleon [2].
Good reproduction of the fragment mass distribution
was obtained, together with a good reproduction of the
observed linearity of the fragment kinetic energy as a
function of the fragment mass.

One of the fundamental questions of the nuclear clus-
tering in finite nuclei is what kind of cluster states can
be expected to exist around the threshold energy of nα
breakup in self-conjugate 4n nuclei. In this excitation en-
ergy region the clustering state is expected to have di-
lute density and to reflect the clustering feature in di-
lute nuclear matter. One possible answer to this question
is the cluster state with nα linear-chain structure. The
idea of the α linear-chain state, which was first proposed
by Morinaga [3], is so fascinating that recently the exis-
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tence of 6α linear-chain states in 24Mg was studied ex-
tensively by experiments and by theoretical analyses of
them [4]. The possibility of the 3α linear-chain state in
12C, which is the simplest α linear-chain state, was stud-
ied in detail by many authors by solving the 3α problem
microscopically [5]. These three-body studies all showed
that the 3α cluster states around the 3α threshold en-
ergy do not have linear-chain structure. The calculated
second 0+ state, which corresponds to the observed sec-
ond 0+ state located 0.39 MeV above the 3α threshold
energy, was found to have a structure where α clusters
interact with each other dominantly in a relative S-wave.
Thus, the theory concluded that the cluster state near the
3α threshold energy has not the 3α linear-chain structure
but an α-gas–like structure which can be approximately
expressed by the wave function
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}
, (1)

where Xi stands for the center-of-mass coordinate of the
i-th α cluster αi and φ(αi) the internal wave function of
the α cluster αi. It is to be noted that this wave function of
eq. (1) expresses the state where three α clusters occupy
the same 0s harmonic-oscillator orbit exp[−γX2], i.e. it
expresses a 3α cluster condensed state. Recently, Tohsaki,
Schuck, Röpke and myself investigated the possibility of
a 4α cluster condensed state by adopting a wave function
similar to eq. (1) [6]. It was shown that we can expect the
existence of the 4α cluster condensed state near the 4α
threshold energy.



132 The European Physical Journal A

2 Clustering in Be and B isotopes

The AMD studies of Be isotopes [7–9] provide a very good
example of the importance of clustering in neutron-rich
nuclei. AMD calculations show that in all Be isotopes from
8Be up to the neutron dripline nucleus 14Be there exists
the α-α core. The motion of neutrons is well understood
by the concept of molecular orbits [10] around the α-α
core. Many years ago, Seya, Kohno and Nagata made a
structure study of Be and B isotopes with the model of
molecular orbits around the α-α core up to the neutron
dripline [11]. The ab initio AMD model now confirmed
theoretically the formation of the α-α core in Be isotopes
up to the neutron dripline. An important valence orbit
for neutrons in Be isotopes is the so-called σ orbit coming
down from the sd-shell due to the clustering deformation.

Especially in 10Be AMD reproduces well the energy
spectra of the observed states which are classified into
four rotational bands: Kπ = 0+

2 and Kπ = 0−1 bands
have the neutron configurations with two neutrons and
one neutron in the σ orbit, respectively, whereas Kπ = 0+

1

and Kπ = 2+
1 bands have neutron configurations with

no neutrons in the σ orbit. The Gamow-Teller transition
strengths from the 10B ground state to Kπ = 0+

1 and
Kπ = 2+

1 band states are well reproduced by AMD, as are
the electric transitions in 10Be [8].

The recent AMD study of 12Be [9] shows further ex-
citing features of clustering in Be isotopes. The ground
rotational band with Kπ = 0+ has a 2p-2h neutron config-
uration, which means the vanishing of the N = 8 neutron
magic number. The second Kπ = 0+ band has a closed
shell structure of neutrons. What is interesting is the third
Kπ = 0+ band, which again has a 2p-2h neutron configu-
ration. Its band head 0+ state is located around 10 MeV
excitation energy and is close to the 6He + 6He thresh-
old at 10.17 MeV. The third Kπ = 0+ band has a mo-
ment of inertia larger than the ground band and its decay
width into the 6He + 6He channel is larger than that into
the 8He + 4He channel. The excited rotational band with
Kπ = 0+ —first observed experimentally at RIKEN [12]
and recently at GANIL [13] in more detail— has a good
correspondence with this theoretical third Kπ = 0+ band.
This band has the characteristic of a molecular band of
6He + 6He structure.

According to the AMD study of B isotopes [14], B iso-
topes near the neutron dripline nucleus 19B have promi-
nent di-cluster density distribution. Here five protons are
divided spatially into two groups —one of two protons
and one of three protons— which are surrounded by neu-
trons. The reliability of such AMD results is assured by the
good reproduction of data for 13B ∼ 19B, which include
binding energies, radii, electric quadrupole moments, and
magnetic moments.

3 Clustering feature in 32Mg and 30Ne

The neutron-rich nuclei 32Mg and 30Ne have been stud-
ied by using the Gogny force with a new version of AMD

in which the single nucleon wave packet is described by
a deformed Gaussian [15]. After the angular-momentum
projection, both 32Mg and 30Ne are shown to be con-
siderably deformed and the experimental data of 32Mg
are well reproduced [16]. The ground states of these nu-
clei have neutron 2p-2h structure, which means that the
neutron magic number N = 20 is broken. The pf or-
bits intrude into the sd-shell for large deformation. While
the ground state of 32Mg has a mean-field–like structure,
cluster-like excited states with the neutron 4p-4h configu-
ration show up in the vicinity of the ground state. What is
very interesting is that in 30Ne the mean-field–like struc-
ture and cluster-like structure are mixed in the ground
state. In this respect, the 30Ne ground state is similar to
the 20Ne ground state where the mean-field–like struc-
ture and 16O+α cluster structure are mixed [5]. However,
the clustering characteristic of 30Ne is quite different from
that of 20Ne when we compare the negative-parity excited
states. As is well known, in 20Ne we have the excited rota-
tional band with Kπ = 0−, which is a parity doublet part-
ner of the ground rotational band with Kπ = 0+ and has
a clear 16O + α cluster structure. In the case of 30Ne, the
low-lying negative-parity rotational band with Kπ = 0−
does not have a clear clustering characteristic and cannot
be regarded as a parity doublet partner of the ground ro-
tational band. The low excitation energy of the negative-
parity rotational band is not due to the clustering but to
the intrusion of the pf orbits into sd orbits.
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